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We discuss the traditional model of the nucieus aa a system of nucleons interacting

via effecti i and , and present results obtained within this
framework for the electromagnetic structure of the ground- and low-lying-states of
A=3-6 nuclel.

1 Introduction

In these lectures we discuss the traditional picture of the nucleus as a system
of nucleons interacting via effective interactions and currents. Light nuclei
provide the ideal ground for testing this dynamical framework, since they are
amenable to numerically “exact” and/or accurate calculations.

The lectures are organized as follow. We first discuss the nature of the
nuclear Hamiltonian. In particular, we review models for the two- and three-
nucleon interactions, as well as current approaches to the treatment of the
relativistic few-nucleon problem. '

The second part of the lectures is devoted to a discussion of the methods
used to solve the Schrodinger equation. This discussion is here slanted towards
quantum Monte Carlo (QMC) methods. Apart from our personal bias, the
reason is that QMC methods, both in the variational Monte Carlo (VMC)
and Green's function Monte Carlo (GFMC) versions, have proven to be well
suited to deal with systems with A=3-8. This, of course, does not do justice to
the other techniques, such as Faddeev-Yakubowsky, correlated hyperspherical
harmonics (CHH), stochastic variational methods, which have been developed
in recent years to deal with few-nucleon systems. However, studies based on
these techniques have been limited 8o far to three- and four-nucleon systems,
and are therefore somewhat more specialized and less flexible than QMC.

Finally, in the third part of the lectures we di intly the |
electromagnetic charge and current operators, and the relation between these
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and the measured elastic and inelastic form factors of few-nucleon systems.
A more complete discussion of these topics can be found in a review paper
by Carlson and one of the authors here (R.S.)!.

2 Nuclear Hamiltonian

We consider the simplest picture of a nucleus, a system of interacting neutrons
and protons. In a non-relativistic framework, the Hamiltonian is:

3
H=Z:—,‘"+Z"“+ E"i;k*’"': (1)
4 .

i<j i<j<h

where the nucleons interact via two-, three-, and possibly many-body interac-
tions. Studies of the nuclear interaction, both experimental and theoretical,
have a long history, beginning essentially with the discovery of the neutron
by Chadwick in 1932, and proceeding through the justification of this simple
picture of nuclei within QCD by Weinberg?. A nice review of much of this
history, along with a detailed description of current nucleon-nucleon (N N) in-
teraction models, is given by Machleidt 3. Here we merely explain some of the
dominant features of the NN interaction and their importance in the structure
and dynamics of light nuclei.

2.1 Two-nucleon interactions

The NN interaction has an extraordinarily rich structure, as has been recog-
nized for quite a long time. It is described in terms of the nucleon’s spin (%a)
and isospin (%'r), where both o and r are Pauli matrices. The former variable
represents the intrinsic angular momentum (spin)} of the nucleon, while the
latter is a convenient representation for its two charge states-the proton and
neutron. The generalized Pauli principle in this framework requires that two-
nucleon states be antisymmetric with respect to the simultaneous exchange of
the nucleons’ space, spin, and isospin coordinates. The predomi isospin-
conserving part of the NN interaction is written as linear combinations of
components proportional to the two isoscalars, 1 and 7; - ;.

The long-range component of the NN interaction is due to one-pion-
exchange (OPE). If isospin-breaking terms are ignored, it is given, at long
distances, by:
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where m, is the mass of the exchanged pion, and
SU = 30;"(}0"-'“ —0;-0y (5)

is the tensor operator. At distances comparable to the inverse pion mass
(1/u = 1.4 fm), OPE leads to a large tensor component in the NN inter-
action. In nuclear systems, then, the spatial and spin degrees of freedom
are strongly correlated, and hence nuclear few- and many-body problems can
be quite different from systems where the dominant interaction is indepen-
dent of the particles internal quantum numbers (spin and isospin), such as
the Coulomb interaction in atomic and molecular problems or Van der Waals
forces in systems like bulk Helium.

To further illustrate this point, we reproduce in Fig. 1 the plots of the
deuteron’s nucleon densities for two different orientations of the pair’s spin,
S. = x1and S, = 0, respectively*. Surfaces of constant nucleon density for the
two different spin orientations are displaied, and, as is apparent in the figure,
the density is strongly correlated with the nuclear spin. Si structures in
the two-body distributions seem to occur in all light nuclei4.- While this figure
was constructed using a particular model of the NN interaction, the Argonne
v1s®, any N N interaction including short-range repulsive and long-range tensor
components would produce a nearly indistinguishable plot.

At moderate and short distances, the NN interaction is much more com-
plicated. However, the large body of pp and pn scattering data accumulated
over the past half century provides, by now, very strong constraints, and indeed
has been crucial in advancing our knowledge of the VNV interaction.

In the short- and intermediate-distance region, the interaction models can

" be quite different, ranging from one-boson-exchange (OBE) models to models

with explicit two-meson-exchanges to purely phenomenological parametriza-
tions. Examples include the Paris®, Bonn7, Nijmegen ®, and Argonne vy4°
interaction models. The Nijmegen group employed Regge pole theory to obtain
an NN interaction model which includes numerous OBE terms with exponen-
tial form factors at the vertices, plus repulsive central Gaussian potentials
arising from the Pomeron and tensor trajectories. This Nijmegen interaction
is mildly non-local in the sense that it contains at most two powers of the
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nucleon pair’s relative momentum. The resulting interaction can be written:
vig(r) =) v*(r) O (6)
»

q

where the operators Of; are pr ts of

0% = [1,04-05, Sy, (L-S)y, pf;, Phyoi - o5, (L-S)}] B[1, 7i-75], (D

Pij = (Pi — P3)}/2 is the relative momentum of the pair, and L is the relative
orbital angular momentum. The radial forms v?(r) are obtained from meson

h with ph logical form factors. The coupling constants and
form factor cutoffs are then adjusted to fit the deuteron properties and NN
scattering data.

The Bonn group” used “old-fashioned” time-ordered perturbation theory,
and included a number of OBE terms, plus two-meson-exchanges (27, 7p,
and #w), correlated two-pion-exchange (TPE) in the form of the exchange
of an effective scalar meson (the o-meson), effective three-pion-exchange, and
intermediate A-isobars. Several forms of the Bonn interaction were presented;
of these, the “full” Bonn interaction is energy-dependent and quently
difficult to use in many-body calculations. The Bonn B interaction is often
used in realistic calculations, it is an energy-independent model constructed in

t pace; in di space it contains non-localities with the range
of the nucleon’s Compton wavelength (= 0.2 fm).

The Argonne vy4 (AV14) interaction® is of a more phenomenological form.
At short and intermediate distances, its radial dependence is parametrized as
a sum of functions proportional to T2, defined in Eq. (4), and consequently
of two-pion-exchange range, plus short-range Woods-Saxon functions. The
magnitude of these terms, as well as the parameters of the Woods-Saxon radial
shapes, are adjusted to fit the data. As the Nijmegen interaction, the AV14
is a mildly non-local interaction containing at most two powers of the relative
momentum. However, the AV14 interaction uses the operators:

0% =l,01-05, Sy, (L-8S)ij, Ly, Loy 04, (L-S)]®[L, 7¢-75]. (8)

The first eight of these operators (those not involving two powers of the mo-
mentum) are unique in the sense that all such operators are implicitly con-
tained in any realistic NN interaction model. The choice of the higher-order
terms involving the second power of the orbital angular momentum operator
is different than in the Nijmegen model, which uscs instead p? operators in
place of L2. The primary motivation for this choice is convenience in few- and
many-body calculations, as the L? terms do not contribute in relative S-waves.
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The Paris interaction ® is somewhat of a hybrid model. At intermediate
NN separations, it includes single w-meson exchange along with TPE con-
tributions calculated using x N phase shifts, zx interactions, and dispersion
relations. In addition, it contains short range phenomenological terms. In-
deed, all models should be idered ph logical at short distances;
they are either written phenomenologically from the start or, in the case of
boson-exchange models, include ph logical meson-nucleon form factors.

Even within the boson-exchange-type models, the interaction should not be
taken literally as the exchange of single bosons. OBE models often incorporate
an effective scalar o-meson, which models the effects of correlated TPE, its
mass and coupling constant being among the parameters that are adjusted
to fit the two-nucleon data. Also, the relatively hard form factors obtained in
NN interaction models can be thought of as simulating the exchange of heavier
mesons with the same quantum numbers, or of simulating other physical effects
outside the direct scope of the model.

While these models all produce a qualitatively similar picture of the NN
interaction, with OPE at long range, an intermediate range attraction and a
short range repulsion, quantitatively they can be somewhat different. There
are several reasons for this, chicf among them is that they have not all been fit
to the same data. For example, models fit to np data do not precisely fit the
experimental pp data if only electromagnetic corrections are introduced.

Fortunately, high quality phase shift analyses of the pp and np data have
become available recently 1®1!, For example, the Nijmegen analysis relies upon
the (known) long-distance electromagnetic and OPE interactions, and makes
a simple energy-dependent par: rization of the interior (r < 1.4 fm) region.
The data and analysis are quite accurate, yielding a x? very near one per de-
gree of freedom. The analysis is carried out for both pp and np experimental
data, and the accuracy is sufficient to “reproduce the experimental charged
and neutral pion masses” from the NN data!!. The Nijmegen group has also
attempted to determine the # NN coupling constant frem the phase shift anal-
ysis 12, and find a slightly lower value (2, /4x = 0.075) than that obtained
previously. This particular result is in agreement with recent analysis of N
data!3, but is still a matter of some dispute 4%, Another high-quality phase
shift analysis has been completed by the VPI group °.

Recently, several NN interaction models have been fit to the experimental
database. These include updated Nijmegen interactions (Nijm I, NijmII, and
Reid93) '7, the Argonne v, (AV18) interaction ®, and the CD Bonn interac-
tion '8, These models follow basically along the lines of their predecessors,
however in order to provide a precise fit, they are adjusted separately to the
np and pp database, which requires them to contain charge-symmetry-breaking
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(CSB) terms of both isovector (7;,, +74,5) and isotensor (37 ,7j,¢ — 74+ 7;) type.
Each of these models fit the NN database extremely well, with x? per degree
of freedom near one. The cost of this excellent fit is a rather large number of
parameters; the AV18 interaction has 40 adjustable parameters and the other
modern interaction models have a similar number.

In these modern interaction models that contain isospin-breaking terms,
the electromagnetic interaction must be specified along with the strong inter-
action in order to precisely reproduce the data, and consists of one- and two-
photon Coulomb terms, Darwin-Foldy and vacuum polarization contributions,
and magnetic moment interactions !*. The full NN interactions, then, are
the sum of a (dominant) isospin-conserving strong interaction, specified elec-
tromagnetic interactions, and finally additional isospin-breaking terms. The
latter, for example, are introduced in the AV18 interaction as terms propor-
tional to:

Ok=15..18 =Ty, o4 -03Ti5, SisTig, (Tia + 13,2) 9)

where the isotensor operator is
Tu =3TaTje —Ti " T5 (10)

OPE includes effects of charged versus neutral pion mass differences. In princi-
ple one could use different coupling constants for the different charge channels,
however the Nijmegen analysis finds no necessity for this and the AV18 in-
teraction uscs f2y,/47=0.075 in all cases. This sophisticated fitting of the
two-body np and pp data, as well as the nn scattering length, allows the study
of isospin-breaking effects in three-, six-, and seven-nucleon systems.

The properties of the deuteron obtained with these interactions are given
in Table 1. The binding energy E4 = 2.224575(9) MeV 2 has been fit by
construction; the asymptotic constants Ag (the S-wave normalization) and n
(the D/S state ratio) which govern the wave function at large distances are
also quite accurate. The quadrupole moment Q4 and magnetic moment p4 are
under-predicted in the impulse approximation; however, the latter has signifi-
cant corrections from two-body current operators and relativistic corrections,
as will be discussed below.

The phase shifts for several channels are displayed in Figs. 2-5°. In Fig. 2
the np and pp phases are shown explicitly to demonstrate the difference be-
tween the np and pp interaction. Several recent phase shift analyses !0-1.21,72
are also shown. In the Sy channel (S=0, T'=1, L=0), the two sets are both
strongly attractive near threshold, indicating the presence of a nearly bound
state in that channel. The phase shifts differ by nearly 10 degrees near the
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maximum, however. For somewhat higher energies, the interaction remains
attractive, but the phase shift turns negative near 250 MeV in the lab frame.
The results of several phase shift determinations are also shown in the figure.

The mixing parameter ¢; is shown in Fig. 3, where it is again compared
to several analyses. As is apparent, significant discrepancies remain among
various analyses in that channel. This has been a subject of much debate,
particularly with regard to comparisons of single- and multi-channel phase
shift analyses. Nevertheless, the behavior of all the modern interaction models
are all quite similar in this regard. The ¢, phase is particularly sensitive to the
strength of the NN tensor interaction.

More typical ia the case of the 3S; phase presented in Fig. 4, for which
all modern interaction models produce nearly identical results, in agreement
with the Nijmegen analysis. Finally, the 3P phase shifts are presented for the
various interactions in Fig. 5.

2.2 Beyond static two-nucleon interactions

The Nijmegen and Argonne v;5 interactions contain non-localities only at the
level of two powers of the relative momentum (p? or L?), and have been found
to yeld nearly identical results for the triton binding energy, 7.62+0.01 MeV
as compared to the experimental 8.48 MeV. A natural question, then, is what
other effects are important in reproducing binding energies of light nuclei and
triton in particular? Two of them are immediately apparent, relativistic cor-
rections and three-nucleon interactions. It has long been known that these
effects cannot be completely separated, they are related both theoretically and
phenomenologically, phenomenologically in the sense that simple estimates of
their contributions are comparable.

The simplest estimate of relativistic corrections is to consider a standard
non-relativistic calculation of the a-particle. The total kinetic energy is on the
order of 100 MeV, or 25 MeV per particle. Thus one would expect relativis-
tic corrections on the order of 2% of this value, or 2 MeV. Three-body forces
can be similar in size; at the longest distances the three-body force is of the
well-known Fujita-Miyazawa type?®, corresponding to two-pion exchanges be-
tween three nucleons with the intermediate excitation of a A-isobar resonance.
The presence of this relatively low-lying resonance requires a three-nucleon
interaction at a similar level, roughly a few MeV in the a-particle.

A wide variety of relativistic calculations of light nuclei has been carried
out. One-boson-exchange mechanisms can be naturally extended to relativistic
treatments; such a scheme naturally leads to a four-dimensional representation
of the NN interaction. Rupp and Tjon?¢ have i igated trinucleon bindi

-3
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as well as other properties within a separable approximation to the Bethe-
Salpeter (BS) equation, and have found an increase in binding compared to
non-relativistic approaches.

Several groups have pursued relativistic one-boson-exchange calculations
within various three-dimensional reductions of the BS equation. These groups
generally find a larger binding in the three-body system than is obtained i m
non-relativistic ions; for Machleidt, S ruca, and Song®
have fit the NN data within a OBE model using a B]a.nkenbecler-Suga: (BbS)
reduction. The resulting quasipotential equation can be cast into a form iden-
tical to the Lip Schwinger equation, thus allowing a direct comparison
with standard non-relativistic results. Clearly, though, any three-dimensional
reduction is not unique. Upon extending the BbS formalism to the three-
nucleon system, Machleidt et al. find a triton binding energy of 8.19 MeV.
Most of the additional binding is retained even in a non-relativistic version
of the calculation, the additional binding in such a calculation (8.0 MeV) is
attributed to the non-local character of the interaction obtained within the
BbS formalism.

Trinucleon properties have also been investigated within the context of
the Gross or spectator equation, in which one particle is placed on shell in
all intermediate states. This scheme has the advantage of having the correct
Dirac equation limit when one of the particles has a very large mass. The NN
scattering and deuteron properties were originally investigated by Gross, Van
Orden and Holinde?®. Recently, Stadler and Gross?® have introduced off-shell
couplings in their OBE model. The triton binding energy has been found to
be sensitive to them. In particular, a set of parameters which reproduces NN
data reasonably well also yields the correct binding energy.

It is important to realize, though, that many of these corrections are

h dependent. For ple, different choices of x NN couplings, when
converted to two- and three-nucleon interactions, are connected by unitary
transformations. These different choices are exactly equivalent at the static
level; however, when going beyond the static level, arbitrary parameters asso-
ciated with the unitary transformation are introduced. Different choices in the
non-static N N interaction also yield different three-nucleon interactions. Since
they are unitarily equivalent, physical properties must be unchanged?"?¢, The
relationship between off-shell effects in the NN interaction and the choice of
three-nucleon interactions has also been discussed by Polyzou and Glockle?

Without resorting to the specific OBE mechanism, it is also possible to de-
fine the general properties of relativistic Hamiltonians which do not introduce
antinucleon degrees of freedom. Within such a formalism the Poincaré invari-
ance of the theory plays a pivotal role. The formal requirements of the theory
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have been presented in an article by Keister and Polyzou®. Information on the
underlying dynamics is outside the requirements of Poincaré invariance, and
hence must be introduced from elsewhere. Fully relativistic calculations within
the relativistic Hamiltonian formalism are not yet well-developed. Glickle, Lee,
and Coester 3' have investigated the triton in a simple model, however, and
have found less binding than in comparable non-relativistic calculations,
Another way to perform relativistic calculations is within a (v/c) expansion
scheme, where terms proportional to powers of the inverse of the nucleon mass
are added to the Hamiltonian in order to preserve the Poincaré invariance to
that order. Such a procedure is based upon the work of Foldy 32, Krajcik
and Foldy *3, and Friar 3. One class of relativistic corrections that has been
considered in such a scheme is purely ki ical. By replacing the non-
relativistic kinetic energy with the corresponding relativistic expression, and
including a frame dependence in the two- (and three-) nucleon interactions,

H= E\/p. +m2+ Y v Py) + Y Viplrg,raiPg) . (11)

i<j i<j<k

it is possible to construct a Hamiltonian with the correct transformation prop-
erties up to order (v/c)®. In this equation, Py; and Py, are the total mo-
mentum of the two- and three-body subsystemns, respectively, while the depen-
dence upon the relative coordinate is explicitly displayed. The Hamiltonian
is non-local through the kinetic energy operator and the frame dependence,
but the non-locality is rather small, on the order of the nucleon’s Compton
wavelength 3.

To perform such a calculation, it is necessary to first refit the NN data
and two-body binding energy with the above Hamiltonian. The results of a
comparison with a phase-equivalent non-relativistic model are somewhat sur-
prising, in that these relativistic corrections to three- and four-body binding
are in fact fairly small and repulsive; approximately 0.3 MeV of repulsion in
the triton and almost 2 MeV in the a-particle. Similar estimates for these
kinematical effects have been found by Stadler and Gross in the framework
mentioned above. The small effect is primarily understood as a cancellation
between the change to a “softer” kinetic energy operator and the revised NN
interaction which must be more repulsive to yield the same phase shifts. The
resulting nucleon momentum distributions are in fact quite similar in these
relativistic and non-relativistic calculations .

Of course, other non-localities will appear in the NN interaction. At long
distance these are introduced by relativistic corrections to OPE, and similar
corrections would be expected in a OBE picture through vector and scalar
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meson exchange. The v/c expansion scheme is currently being extended to
treating the non-localities associated with OPE. These non-localities are re-
quired for a fully consistent treatment of the two-body charge operator and
the nuclear Hamiltonian, and are naturally present in a relativistic OBE cal-

culation. H , various technical difficulties make calculations of heavier
systems more difficult within the OBE scheme; more direct comparisons of the
different relativistic calculations will undoubtedly prove instructive in under-

standing all the various results obtained to date.

Three-nucleon interactions can also arise from the internal structure of the
nucleon. Since all dégrees of freedom other than the nucleons have been inte-
grated out, the presence of virtual A-isobar resonances induces three-body
forces. The longest-ranged term involves the intermediate excitation of a
A-isobar, with pion exchanges involving two other nucleons. The two-pion-
exchange three-nucleon interaction (2aTNI) was originally written down by
Fujita and Miyazawa?3:

Vir = Awe | (X5, Xa} (775, 70 1a)

1
+leu,xnl [ri-rgoriomi]| (12)

where .
Xy = Y,(nj)m o5+ T.(ru)s., . (13)

This interaction is attractive in light nuclei. Of course, other effects enter
a8 well; several groups®*2® have performed calculations with explicit A-isobar
degrees of freedom in the nuclear wave functions. They generally find that the
attraction from the long range two-pion-exchange TNI is canceled by dispersive
effects at shorter distances and hence there is little net attraction.

Within a nucleons-only picture, several explicit models of the three-nucleon
interaction have been proposed. One of them was put forward by the Tucson-
Melbourne group *°, a three-nucleon interaction based upon a pion-nucleon
scattering amplitude derived using PCAC, current algebra, and phenomeno-
logical input. This interaction contains the long-range 2xTNI, but also has
additional structure at shorter distances. More recent versions *® contain p-
exchange as well as pion-range forces between the three-nucleons, with the r-p
components of the interaction being repulsive in light nuclei. These models
have been used in many different calculations, and the short-distance x NN
cutofl can be adjusted to reproduce the triton binding energy. The cutoff
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dependence of the results is significantly ller in models which include p-
exchange*!.

Another model has been derived by the Brazilian group 4345, by using
tree-level diagrams of effective Lagrangians which are approximately invariant
under chiral and gauge transformations. After proper adjustments of the pa-
rameters, the resulting force gives similar results in the trinucleon bound-states
as the Tucson-Melbourne model. Recent studies of this model are presented
in Ref. %!,

A somewhat different approach has been taken by the Urbana-Argonne
group “®47, Given the uncertainties in the three-nucleon interaction at dis-
tances shorter than pion-exchange, the interaction is taken as the sum of the
27TNI plus a shorter-range term:

Vi = Vi + Vi, (14)
with
Vi=Uo X Triy)T2(ra) . (15)
ijk cyct

The second term is of two-pion exchange range on each of the two legs. It is
meant to simulate the dispersive effects which are required when integrating
out A-isobar degrees of freedom. These terms are repulsive, and are here taken
to be independent of spin and isospin.

The constants A3, and U in front of the two terms are adjusted to
reproduce the triton binding energy, and to provide additional repulsion in
hypernetted-chain variational calculations of nuclear matter near equilibrium
density. However, the resulting value for the A;, coefficient is close to that
obtained from the analysis of observed pion-nucleon scattering. Clearly the
energy levels of light nuclei must be well reproduced if accurate predictions of
other observables at low and intermediate energy transfers are to be obtained.
Since one of the major goals is to tie together the medium- and low-energy
properties of light nuclei, it is 1 to make simpl ptions about the
nature of the TNI in pursuit of that goal.

Undoubtedly the real situation is much more complicated: relativistic ef-

fects and a significantly more compli g th 1 interaction are cer-
tainly present. It will take far more than calculations of trinucl binding
energies to shed light on these questi For | fcul of three-

nucleon scattering observables are, on occasion, at variance with the experi-
mental data. Also, the isospin dependence of the TNI could prove crucial in
studying light neutron-rich nuclei and neutron stars. Given recent improve-
ments in experimental data and few-body techniques, though, it is quite pos-
sible that a more thorough understanding of these isaues will be soon realized.
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3 Quantum Monte Carlo methods

Given a model for the nuclear Hamiltonian, a first and important test is solv-
ing for the nuclear ground-states. Although the nuclear interaction models
described above are simple to write down, solutions have proven to be rather
difficult to obtain. For the three-nucleon system, there is a long history of
numerical solutions to the Faddeev equations. The first calculation for local
potential models without tensor interactions were obtained in Refs. 444®, By
now, a variety of methods have been used for studying spectra of light nu-
clei: Faddeev-Yakubowsky, correlated hyperspherical harmonics (CHH), and
variational and Green’s function Monte Carlo methods. As mentioned in the
Introduction, here we will only review the quantum Monte Carlo methods, and
refer the reader to a recent review ! for a discussion of the other methods.
Monte Carlo methods have often proven useful in the study of strongly-

interacting q y , and fe ) ystems are no exception. They
are primarily useful when explicit numerical schemes such as Faddeev or CHH
methods eannot be carried out b the di jons of the 'y grids

grow too large. Two principle Monte Carlo schemes have been developed-
variational and Green’s function Monte Carlo.

Variational Monte Carlo (VMC) is an approximate variational method that
uses Monte Carlo techniques to perform standard numerical quadratures. Dif-
fusion or Green's function Monte Carlo (GFMC) methods, on the other hand,
employ Monte Carlo methods to evaluate the imaginary-time path integrals
relevant for a light nucleus. They typically use the VMC wave functions as
a starting point, and cool them in order to measure ground-state observables.
In this section we describe their application to ground-state properties; each
can also be employed to gain information about nuclear dynamics.

8.1 Variational Monte Carlo

Variational Monte Carlo (VMC) employs an explicit form of a trial wave func-
tion, typically containing 20-30 variational parameters. These parameters are
optimized by minimizing the expectation value of the energy; Monte Carlo
methods, specifically the Metropolis et al. % algorithm, are used to evaluate
the spatial integrals.

The trial wave functions used in VMC calculations typically have a simple

form:
|¥r) = [s II Fm] [SHFu] %), (16)

<<k i<j

where S represents the symmetrization operator, respectively, acting over the
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A-particle space. In this equation for |[¥7), the Jastrow state |¥,) carries
the quantum number information and, for A > 4, much of the long-distance
physics. Important clustering properties and binding or threshold effects are
incorporated here. The Jastrow wave function |¥,) is written as:

[y =Al IT fat) II fotrp) TI ftrdi®d, (D

i<j€s i€s,j€p iep.jep

where A is the antisymmetrization operator. The central pair correlations f¢
are functions of the pair distance only. However, the long-distance behavior
may be different for nucleons in different shells, and hence the f¢ are labeled
by the single-particle orbits of the two nucleons. The determination of these
Jastrow factors is described below. For these larger systems, |®) is written as
a sum over a small number of shell model configurations, and the coefficients
of the various configurations being variational parameters.
For example, in recent calculations of six-body nuclei 47:

[#(JMTT,)) = Al2a(00)dp(rs,a)dp(re)] X
Y- Bss[1¥i(0s,0)Yi (Rs,a)lelxsxels]  y X [te)r (18)
LS

where |®,(00)) is an antisymmetrized product of four-nucleon spinors coupled
to J=T=0 with no spatial dependence, and the spatial dependence in the
p-wave orbitals ¢, is taken from the solution of a single nucleon in a Woods-
Saxon well. Additional clustering properties, for example the a-d breakup in
A=6, as well as three-body correlations can also be incorporated in the Jastrow
wave function if they are found to be important. Note that the wave function
is translationally invariant in that it involves only pair separations and the
separation between p-shell nucleons and s-shell clusters. The wave functions
¥, are constructed to be eigenstates of the total momentum J. Since the pair
correlation operators commute with J, the total wave function also has good
total angular momentum.

The “two-body” spin-isospin correlation operators F; in Eq. (16) carry the
short and intermediate-range physics, including the tensor correlations and the
isospin dependence in the short-range repulsion. They are parametrized as:

Fj= [1 + Y umlrgiR)OT, (19)
m=1,8
containing operuiors O} that are a subset of those employed in the interaction:

O =005, 8;,(L-S);l®[,7 7). (20)
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The product f¢(ry;)F,; is required to satisfy the short-distance properties of
the wave function as two nucleons are brought close together. The dependence
upon the pair distance ri; is obtained as a solution of Schrddinger-like equa-
tions in the various two-body channels. These correlations are obtained from
equations similar to those used for the low-density limit of Fermi-hypernetted-
chain variational calculations of nuclear matter 5!:52. Schematically, they are
written as:

=(/m)VIf ()¢5t + [oig + MONS()$asT =0 . (21)

This equation is solved for the various J,S,T channels and the correlations
are recast into the operator form, as in Eq. (19). The functions ¢(r) con-
tain the appropriate spherical harmonics for the given channel. For the spin
triplet ch Is the bination [f(r)¢(r)]ssr satisfy two coupled equations
with L=J-1 and L=J+15. The variational parameters are included in the
functional form of A(r). For s-shell nuclei the form is adjusted so that

Va1~ - exp(=r)/r, (22)
where 7 is related to the separation energy of the last nucl Spin d i

in the breakup channels can be treated by including a non-zero Iongidistance
behavior in the spin dependent correlations u,,(r). For larger systems, how-

ever, the product of the f,, or f,, in |¥;) times the F;; are adjusted to go

to a constant. The pair correlati Li Fi; are defined to carry the
spin-isospin dependence of only particles i and . However, the associated am-
plitudes u,,, are functions of the coordinates of all the nuc} ; the presence

of the remaining particles requires a quenching of the non-central correlations.
The full structure of this quenching is described in Ref.52.

The structure of the three-nucleon correlations Fijx can, in principle, be
quite complicated. The most important correlation is that due to the three-
nucleon interaction Vi, and the operator form is taken from:

Fiyp =1~ pVip, (23)

where f is again a variational parameter. Additional three-body correlations
have been investigated by Arriaga, Pandharipande and Wiringa 52,

Given the wave function, one can in principle evaluate the expectation
value of any operator using Metropolis Monte Carlo techniques. VMC meth-
ods have often been employed in studies of other quantum systems, including,
for example, atoms and molecules, the electron gas, and liquid and solid He-
lium. The state dependence of the interaction, though, requires a somewhat
different treatment than is traditionally used in VMC calculations. Typically,
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one uses the Metropolis method to obtain points distributed proportional to a
probability density W(R), often choosing W(R) = |(¥7(R)|¥7(R))], where
the angled brackets indicate sums over the internal degrees of freedom, the

spins and isospins. Hence an esti of an exp ion value is obtained
from:
(©) = JdR(@r(R)O|#T(R)) T, (¥1(Ra)IO|¥r(R))/W (Ra)

TaREr R (R) = 3, (Er(Rer ()W) ° Y

In the case of the Hamiltonian, we are averaging (¥r|[H|¥7)/W (the “local”
energy) over the points to yield an estimate of the ground-state energy.

Several variations on the standard methods are incorporated to treat light
nuclei. First, instead of computing the full wave function |¥7) in Eq. (16), one
can sample over the order of pair and triplet correlation operators Fj; and Fi
that are implied by the symmetrization operators S in Eq. (16). These orders
must be sampled independently for the left and right hand wave functions and
a positive definite choice made for a probability density W(R).

In all cases, Monte Carlo methods are used to evaluate the coordinate
space integrals, while spin-isospin sums are explicitly evaluated. The number
of spin degrees of freedom grows as 24, while the isospin grows a little more
slowly due to charge and (approximate) isospin conservation. The efficiency of
the variational calculations can be dramatically improved by calculating energy
differences between different wave functions. Nevertheless, these explicit spin-
isospin tions require puting time that grows exponentially with A;
a requi that has limited standard VMC calculations of nuclear systems
to light nuclei.

Once the variational par have been optimized, the expectation
value of any ground-state observable can be evaluated using Eq. (24). Off-
diagonal observables, such as tum distributions, can be similarly eval-

uated. They simply require an additional integration variable corresponding
to the off-diagonal displ: E: i q ities of int Tud
charge and magnetic form factors, sum rules, etc. In addition, other quanti-
ties can be computed that are not directly observable experimentally, but are
useful in approximate theories of reactions, including momentum distributions
of nucleons and nucleon clusters. A summary of some recent results is given
below, additional results are presented in Refs. 453,

3.2 Green's function Monte Carlo

Diffusion or Green's function Monte Carlo (GFMC) methods rely upon the
path-integral approach to eval the imaginary-time propagation of the wave
function:
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I¥0) = lim exp{~(H — Eo)rll¥r) (25)

where |¥o) is the ground-state of H with energy Fq, and [¥7) is a trial state.
In order to evaluate this propagation, the imaginary-time 7 is split up into
small time slices Ar, and an equation of the form

|%(r + Ar)) = exp[-(H - Eo)Ar]|¥(r)) (26)

is iterated.

This method has a long history, starting with calculations of the a-particle
using a spin-isospin independent interaction by Kalos®%. It has also been
used extensively for problems in atomic and condensed matter physics. The
first application to state-dependent interactions was provided by Carlson ®®
and more realistic interactions were used in Refs. %9:%7. Recently calculations
for A=6 and 7 have been performed, which are the first direct microscopic
calculations of these p-shell nuclei 47+,

The first element in performing such a calculation is the evaluation of the
matrix elements of the short-time propagator:

(R',x'|exp(~-HAT)|R,x) = G(R',R; A7) = [ I Goutlri - ril)]
i=1,4

_Aar 9«1('«;-“;)
x x;xs(x i K}Z« Vin(R') le)(Xl'SH [yo T r.,) x2)

X(x=l[l———~ > Vus(R)]lx). (27

i<j<k

where the x represent A-nucleon spin-isospin states, Go ¢ and go,i; are the free
one- and two-body imaginary-time propagators, respectively, and g; is the
interacting two-body propagator.

The free propagators are simple Gaussians:

g 2
Go.i = Nl exp [ - ﬂl(—r42A+‘)] ’ (28)
(rfy = ryy)®
o = Naexp | -m—"r ) (29)
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with normalizations N; such that the norm of the flux is preserved ( f dr;Go; =
1). The pair propagator g;; is the imaginary-time equivalent of the two-body T-
matrix, it is a matrix in the two-body spm—nsospm space nnd must be calculated

numerically. The propagat an n eq
0t [ + His] 9@’ mimlice) = (30)
where
Hij=-(1/m)V% +vy , (31)

and xi; and x!; are two-nucleon spin-isospin states. The g;; also satisfy a
boundary condition

(sl (' i 7=0)|x5) = 8(r — ')y, (32)

Techni for calculating and storing g;; are described in detail in Ref.5®.

Once the propagator G(R,R'; At) is constructed, a practical algorithm
must be implemented to carry out the iteration of the wave function in Eq. (26).
The scheme currently used for sampling the paths is described in detail in
Ref.®®, here we simply sketch the basic ideas. Since the wave function (prop-
agators) are vectors {matrices) in spin-isospin space, a scalar quantity must
be defined to sample the paths. In principle, any set of paths can be chosen
as long as the probability used to choose the paths is divided out when com-
puting expectation values. To minimize the variance, though, it is important
to follow as closely as possible standard importance sampling techniques used
in traditional Green’s function and diffusion Monte Carlo®®. In essence, this
requires sampling from a kernel so that the probability of a configuration at
R is proportional to 3=, (¥7(R)|x){x|¥(R;7)). In the limit that the trial
wave function ¥ is exact, and the propagator is sampled exactly, this method
would produce the correct ground-state energy with no variance.

To this end, we introduce an importance function / that depends upon the
full trial and GFMC wave functions. The calculations proceed by sampling
paths from I{%r(R), ¥(R;7)]. The importance function must be real and
positive and a convenient choice is:

I¥r(R), ¥(R; 7)) =

S (@ r(R)xHxI¥(R; 7))
X

+cz
x
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(Zr(R)IXHxI¥(R; 7)) (33)




where ¢ is a small positive coefficient. The second term ensures that all paths
are allowed with a positive probability. In this equation and those that follow,
the depend upon the sy ization S in the pair and triplet orders will be
suppressed, both in the wave function, Eq. (16), and the propagator, Eq. (27).
The pair and triplet orders are, in fact, sampled in both cases. Details of the
sampling and weighting of paths are described in Ref. 5.

Branching techniques are used to split (delete) pachs wlth largc (small)
importance functions I[¥7(R), #(R;7)] in a statistically
After branching, expectation values can be recovered from the equwnlent. of
Eq. (24) evaluated between the trial and propagated GFMC wave functions:

(¥ (R)IO[¥(Ry; 7)) /1[¥r(Ry), ¥(Ry; 7))
(¥ (RO (Ry; 7))/ I[¥r(R), ¥(Ry; 7))

This is the basis of the importance sampled GFMC algorithm for non-central
interactions. [ ing this equation propagates the amplitudes of the wave
function in a way designed to minimi istical fluctuations in calculated
expectation values.

The matrix element in Eq. (34) is a “mixed” estimate; it is of the form

{¥r|Oexp(-Hr)l¥7)
(¥r|exp(-Hr)|¥r)

The value Omix is the matrix element of the trial (variational) and the true
ground-state. The mixed estimate is sufficient to evaluate the ground-state
energy, since the Hamiltonian commutes with the propagator. Indeed, an
upper bound to the true ground-state energy Eq is obtained for any value of
T:

(o) =

(34)

(O)mix = (35)

_ (¥r|exp(—H7/2)H exp(-H1/2)|¥7)
Hhotx = ~Grexp(-Hr D exp(-Hr/ D) =0~ O
Of course, the actual convergence is governed by the accuracy of the trial
wave function and the spectrum of the Hamiltonian. Often knowledge of the
spectrum can be used to estimate the remaining error in a calculation that
necessarily proceeds to only a finite 7.
For quantitics other than the energy, one typically estimates the true
ground-state expectation value by extrapolating from the mixed and varia-

tional estimates:
{¥7|0|¥7)
(¥r|¥r) °’

which is accurate to first order in the difference between ¥ and ¥7. The
variational wave functions used in this work are typically quite accurate, so

(0) = 2(O)mix — (37)
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this estimate is usually sufficient. For tum-ind dent q ities, one

can also retain a time history of the path in order to reconstruct an estimate
of the form:

{¥r|exp(-H7/2)Oexp(-H1/2)|¥T)
(¥7|exp(—Hr/2) exp(~HT/2)[¥1)

For momentum-dependent operators O, however, the statistical fluctuations
associated with this estimate can be quite large.

Two caveats remain in present-day GFMC calculations of light nuclei.
First, due to the well-known “sign-problem” in all path-integral simulations of
fermions, the statistical error grows rapidly with 7. Present-day calculations
are typically limited to 7 of the order of 0.05—0.1 MeV~". This is not as severe
a situation as one might suppose, since we have quite accurate variational wave
functions available for these nuclei and we have a significant knowledge of the
excitation spectra in these systems. For calculations of six- and seven-body
nuclei, it is useful to perform a shell-model like diagonalization in VMC to
determine the optimum amplitudes for the various symmetry components of
the p-wave part of the wave function . Nevertheless, for some problems it
may be quite useful to have a path-integral approximation which provides
another type of approximation to the true ground-state. For example, the
fixed-node %% and constrained-path methods®! have proven quite valuable in
condensed matter problems. These constraints can often be relaxed to yield
an even better estimate of observables.

The other concern is that in all currently available GFMC calcul
an approximate interaction which contains no p? terms has been used in the
propagation. Perturbation theory is then used to determine the expectation
value of the difference between the two Hamiltoni ‘This approximation has
proven to be quite accurate in studies of the three- and four-body systems.
Although the equations above are still correct for an interaction with p?, L?
or (L - S)? interactions, a direct implementation of the method will yield large
statistical errors. Again, variational schemes based upon constraints to the
path-integral may prove useful.

GFMC has proven to be quite accurate in the three-, and now four-body
systems in which it has been tested. Recent applications to larger systems*7:5®
provide the first real tests of these microscopic models beyond A=4. It is
also possible to compute low-energy scattering with path-integral techniques,
as well as obtain information about a variety of dynamic nuclear response
functions. A selection of results is presented in the following section.

(0)= (38)
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8.3 Spectra of the light nucles

The spectra of light nuclear systems provide the first test of nuclear interaction
models: only if the spectra are well reproduced one can expect to accurately
calculate other low energy and momentum observables, like radii, form factors,
and scattering lengths.

A summary of VMC and GFMC results for the A=4-7 nuclei ground-
state energies is given in Fig. 6. These results correspond to the Argonne
vys two-nucleon® and Urbana-IX three-nucleon 47 interactions. Note that the
strength of the three-nucleon interaction is fixed by fitting the *H binding
energy in a GFMC calculation, and the saturation density of nuclear matter
in a variational calculation based on the Fermi-hypernetted-chain-summation
technique.

4 The ! electr gnetic current operator

The simplest description of nuclej is based on a non-relativistic many-body
theory of interacting nucleons. Within this framework, the nuclear electro-
magnetic current operators are expressed in terms of those associated with the
individual protons and neutrons-the so-called impulse approximation (IA).
Such a description, though, is certainly incomplete. The NN interaction is
mediated, at large internucleon distances, by pion-exchange, and indeed seems
to be well represented, even at short and intermediate distances, by meson
exchange mechanisms, which naturally lead to effective many-body current
operators. It should be realized that these many-body current operators arise,
as does the NN interaction itself, as a q of the elimination of the
mesonic degrees of freedom from the nuclear state vector. Clearly, such an
approach is justified only at energies below the threshold for meson (specifi-
cally, pion) production, since above this threshold these non-nucleonic degrees
of freedom have to be explicitly included in the state vector.

Two-body electromagnetic current operators have conventionally been de-
rived as the non-relativistic limit of Feynman diagrams, in which the meson-
baryon couplings have been obtained from either effective chiral Lagrangians 62
or semi-empirical models for the off-shell pion-nucleon amplitude *. These
methods of constructing effective current operators, however, do not address
the problem of how to model the composite structure of the hadrons in the
phenomenological meson-baryon vertices. This structure is often parametrized
in terms of form factors. For the electromagnetic case, however, gauge invari-
ance actually puts constraints on these form factors by linking the divergence
of the two-body currents to the commutator of the charge operator with the
NN interaction. The latter contains form factors too, but these are deter-
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mined phenomenologically by fitting NN data. Thus the continuity equation
reduces the model dependence of the two-body currents by relating them to
the form of the interaction. This point of view has been emphasized by Riska
and collaborators 4% and others **7!, and is adopted in the treatment of
two-body currents that we discuss below.

The nuclear electromagnetic charge and current operators, respectively
p(q) and j(q), are expanded into a sum of one-, two-, and many-body terms
that operate on the nucleon degrees of freedom:

o)=Y A @+ AP @+- (39)
¢ i<j

i@ =Y i@+ i@+ . (40)
i i<j

The one-body operators p=|) and j?) are obtained from the covariant
single-nucleon current

o

7 =) [R@)r + (@) 2
where p (p’) is the initial (final) momentum of the nucleon of mass m, and
F1(Q?) and F3(Q?) are its Dirac and Pauli form factors taken as function of
the four-momentum transfer Q? = ~g,¢* > 0, with ¢, = Pj,=Pu. The Bjorken
and Drell 7 convention is used for the y-matrices, and o#* = (i/2)[v* , v¥).
The j* is expanded in powers of 1/m and, including terms up to order 1/m3,
the charge (4=0) component can be written as

] u(p) , (1

P = pn (@) + p{c@) (42)
with
Aon(a) = eelar (43)

() 1 \a:r
Y L A | Qv
Pi.hc(q) ( TY Qi im ) € e
i
= g Qui—e)a-(oixpi) éan (44)
while the current components (i = 1,2,3) are expressed as
1

(D i i .
3@ = goe {pi, €N} - g x o, (45)
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where {---, - --} denotes the anti . Here we have defined

a= 3 [6H@)+GE@Ind (46)
m= % [CR @) +6K @] “n

and p, ¢, and 7 are the nucleon's momentum, Pauli spin and isospin operators,
respectively. The two terms proportional to 1/m? in pﬁ_‘,{c are the well known
Darwin-Foldy and spin-orbit relativistic corrections 7>74, respectively.

The mpemcrlpn S and V of the Sachs form factors Gg and G denote,
r tively, lar and i tor binati of the proton and neutron
electric and magnetic form factors™. The Gg and G are related to the Dirac
and Pauli form factors in Eq. (41) via:

5@ = @) - T R@ )
Gu(@) = R(@)+ F(Q), (49)
and are normalized so that
GEQ*=0)=GLQ'=0) =1, (50)
G3(Q*=0) = pp + pn = 0.880py , (51)
GY(@*=0) = pp = pn = 4706y , (52)

where g1, and u,, are the magnetic moments of the proton and neutron in terms
of the nuclear magneton py. The Q?-dependence of the Sachs form factors
is determined by fitting electron-nucleon scattering data 7%7®. The proton
electric and magnetic form factors are experimentally fairly well known over
a wide range of momentum transfers 73823  In contrast, the present data on
the neutron form factors 7, particularly the electric one, are obtained from
model-dependent analyses of ed scattering, and the available semi-empirical
parametrizations for them differ widely, particularly at high momentum trans-
fers. Until this uncertainty in the detailed behavior of the electromagnetic form
factors of the nucleon is narrowed, quantitative predictions of electro-nuclear
observables at high momentum transfers will remain rather tentative.

The electromagnetic current operator must satisfy the continuity equation

a-j@) =[H,eq)] , (53)
where the Hamiltonian H includes two- and three-nucleon interactions
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H=22_L vyt Y Vin (54)
i i<4 i<j<k

To lowest order in 1/m, the continuity equation (53) separates into separate
continuity equations for the one-, two-, and many-body current operators

a1 = (B, oata)] © (55)
1@ = [o, pRn@ + ARa@)] (56)

and a similar equation involving three-nucleon currents and interactions.

The one-body current in Eq. (45) is easily shown to satisfy Eq. (55). The
isospin- and momentum-dependence of the two- and three-nucleon interactions,
however, lead to non-vanishing commutators with the non-relativistic one-body
charge operator, and thus link the longitudinal part of the corresponding two-
and three-body currents to the form of these interactions. Here we will limit our
discussion to two-body currents; a recent investigation of three-body current
operators is presented in Ref.®®,

4.1 Electromagnetic two-body current operators from the two-nucleon inter-
action

All realistic NN interactions include isospin-d dent central, spin-spin and
tensor components

[U'(Tu) + u"(ru)v‘ o5+ U"(f'u)Su] T Ti , (57)
where the o7 and tr terms include the long-range one-pi h tial
(OPEP). The 7¢-1; operator, which does not commute with the chnrge opera-
tors in Eq. (56), is formally equivalent to an implicit momentum dependence®.
This is shown by considering the product of space-, spin-, and isospin-exchange
operators, denoted respectively as Eyy, E;, Ef;, where

7l
E;,:exp[lj ds~(p‘—p,)] , (58)
™
140y
,',=_"2‘_Z£, (59)
1 -y
u= H«: o (60)
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They must satisfy Ey; Ef; Ef; = —1. The line integral in Eq. (58) is along any
path leading from r; to r;. %‘hus two-body current operators associated with
the T; - T5-dependent interactions, Eq. (57), could be constructed by minimal
substitution in the space-exchange operator:

Pi = Pi—Alry) , (61)

where A(r;) is the vector potential. Due to the arbitrariness of the integra-
tion path in Eq. (58), such a prescription does not lead, however, to unique
two-body currents ®®. Therefore, an assumption has to be made about the
dynamical origin of the interactions in Eq. (§7) in order to construct the asso-
ciated currents.

At intermediate and large internucleon separation distances, the v™, v77,
and v'" interactions are assumed to be due to 7- and p-meson exchanges. The
xNN and pNN coupling Lagrangians are given by:

Lonn(@) = ZY G0y mroa) - umte) (62
'
- K
Lonn(@) = gwwb(@) [(1* + 55070, p,@)] 79(a) . (63)
where n(z) and p(z) are the #- and p-meson T=1 fields, y(x) is the T=1/2
nucleon field, m, and m, are the meson masses, fenn, gonN and K, are
the pseudo-vector x NN, and the vector and tensor pNN coupling constants
(f2nn/47=0.075, 9:~~[4r=0.55, and x,=6.6), respectively. By performing a

non-relativistic reduction of the one-boson-exchange Feynman amplitudes, the
#- and p-meson exchange interactions are obtained in momentum space as

[v,s(k) + [vx (k) + 2v,(K)] k20 - o5 = [va(k) — v (k)] Sij (k)] Ti-T5, (64)
where

1
vps(k) = g:NNm , (65)
(4

vk = ~Lam 1 (66)
T 3mE k4 md

2 2
— _ 9N (14 Kp)
k) = = ot Bl ®n
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The tensor operator in space is defined as

Su(k) =k’0¢-0;—30;-k0,-k . (68)
The isovector two-body currents corresponding to x- and p-meson ex-
changes can be derived by minimal substitution 8, — 8, % iA,(z) in the
xNN and pNN coupling Lagrangians, Eqs. (62)-(63), and in the free x- and
p-meson Lagrangians:
1 m?
L,(z) = 56,.#(:) -8 x(z) — T‘n’(z) -w(z) , (69)
1
Ly(z) = =1 [0up.(2) — Dup,(2)] - [0 " (2) - 8 ()]
m2
5 P*(2) - pu(2) - (70)
The non-relativistic reduction of the Feynman amplitudes shown in Fig. 7 leads

to the momentum-space two-body operators:

52, (e ky) = 3ire x 700, GY(Q) [uxhpdostos - k) = valkdo (o4 - ko)

N o G RO LA A IR
i ]

33k k;) = =3i(r x 74), GL(QY) [u.(k,-)m x (o5 x ky)

~vp(ks)ory X (4 x ki) 'ﬂ%}%:,("ﬁ

[0 = ky)(oi x ki) - (05 x k)

+Hoox ki) oy - (ke x kg) + (o9 x k) 0 - (kq % k)]
+%;-T:%I%s(k‘) —v,s(k,)]] ) (72)
i

where k; and k; are the fractional momenta delivered to nucleons § and j with
q = ky+k;, and the form factor G§(Q?) has been included to take into account
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that the same form factor be used to describe the electromagneuc structure
of the had in the longitudinal part of the current operator and in the
charge operator. Again, it places no restrictions on the electromagnetic form
factors which may be used in the transverse parts of the current. Ignoring this
ambiguity, the choice made here (G%(Q?)) satisfies the “minimal” requirement
of current conservation. However, for a somewhat different discussion of this
point we refer the reader to Ref.?!,

The first two terms in Eqs. (71)-(72) are seagull currents corresponding to
diagrams (a) and (b) of Fig. 7, while the remaining terms are the currents due
to 7- and p-meson in flight. These operators with the v, (k), v,(k), and v,s(k)
propagators suitably modified by the inclusion of form factors have ¢ ly
been used in the investigation of exchange current effects in nuclei. A first sys-
tematic derivation of pion and heavy meson exchange current operators was
in fact given by Chemtob and Rho in their seminal 1971 paper%. While thm
simple two-body currents satisfy the continui ion with the corresp
ing meson exchange interactions, they do not satisfy the continuity equation
with the realistic models for the NN interaction that are used to construct
nuclear wave functions. A method of obtaining current operators which satisfy
the continuity equation for any given v", v°7, and v!" interactions has been
proposed by Riska® and, independently, Arenhovel et ol.®®. In this method
these interactions are attributed to exchanges of families of x-like pseudoscalar
(PS) and p-like vector (V) mesons. The sum of all T=1 PS- and V-exchange
terms is then obtained as

the electromagnetic structure of the nucl The continuity tion requires

vps(k) = [v77 (k) - 24'"(K)] /3 , (73)
vy(k) = [v77 (k) + o7 ()] /3 , (74)
vys(k) =v7(k) , (75)
where
v (k) = 4n [, * rdr jo(kr)v"(r) , ) (76)
vk = 55 [ e ien) - 1070 ()
v (k) = % /o w ridr ja(kr)vtT(r) . (78)

The expression for v7 (k) reflects the fact that in all NN interaction models
derived from a relativistic scattering amplitude a d-function term has been
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dropped from the spin-spin component. The current operators _|‘ ,,,5 and j j‘ 7% V,
obtained by using vpg(k), vy (k), and vys(k) in place of u.(é }, v,(k), and
v,s(k) in Eqs. (71)-(72) satisfy the continuity equation with the v, v°7 and
v'" potentials in the model interaction used to fit the NN scattering data, and
to calculate nuclear ground- and scattering-state wave functions. In particular,
there is no ambiguity left as to the proper form of the short-range behavior of
the two-body current operator, as this is determined by the interaction model.
Configuration-space expressions may be obtained from:

jg) (@) = /dx dax (::;: (‘21:.;’ etk (r—x) gilky- (r’_').lg).(khkj) , (19
where a=PS or V, and are given explicitly in Ref. 2.

Although the Riska prescription obviously cannot be unique, it has nev-
ertheless been shown to provide, at low and moderate values of momentum
transfer (typically, below ~ 1 GeV/c), a satisfactory description of most ob-
scrvables where isovector two-body currents pla.y a large (xf not dominant)

role, such as the deuteron threshold elect gration °®93, the neutron
and proton radiative captures on proton®® and deuterons ™ at low energies,
and the magnetic ts and form factors of the trinucleons®%.

In addition to spin-spin and tensor components, all realistic interactions
contain spin-orbit and quadratic momentum-dependent terms. The construc-
tion of the associated two-body current operators is less straightforward. A
procedure similar to that used above to derive the x-like and p-like currents
has been generalized to the case of the two-body currents from the spin-orbit
interactions ?0, It ists, in , of attributing these to exchanges of o-
like and w-like mesons for the isospin-independent terms, and to p-like mesons
for the isospin-dependent ones. The explicit form of the resulting currents as
well as their derivation can be found in the original reference *®

The quadratically momentum-dependent terms represent, on the one hand,
relativistic corrections to the central and spin-orbit interactions, which are pro-
portional to p? (p is the relative momentum) and, on the other hand, quadratic
spin-orbit interactions. To construct the associated two-body current opera-
tors is, in general, difficult or impossible, because of the many approximations
typically used to simplify the structure of these interaction components. Fur-
thermore, some interactions, such as the Argonne models %%, contain terms
proportional to L2, which do not appear in any natural way in boson-exchange
models. Hence, in view of the fact that the numerical significance of these op-
erators is unyway small, the two-body currents associated with the quadratic

K

p are obtained by minimal substitution, Eq. (61), into
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the corresponding interaction components %2,

The currents tated with the tum depend of the interaction
are fairly short ranged, and have both isoscalar and isovector terms. Their
contribution to isovector observables is found to be numerically much smaller
than that due to the leading =-like current °%, However, they give non-
negligible corrections to isoscalar observables, such as the deuteron magnetic
moment and B(Q)-structure function 5%, and isoscalar combination of the
magnetic moments and form factors of the trinucleons 395, as will be reported
later in Sec. 5.2.

4.2 “Model-dependent” electr tic two-body current operators

The two-body currents discussed in the previous section are constrained by
the continuity equation and do not contain any free parameters, since they are
determined directly from the NN interaction. They can therefore be viewed as
“model independent”. There are, however, additional two-body currents which
are purely transverse. These will be referred to as “model-dependent”two-body
currents.

The class of model-dependent currents that has been considered in the lit-
erature contains two-body operators associated with electromagnetic transition
couplings bet different , such as the pry and wmry mechanisms, or
with itation of intermedi leon resc (specifically, the A-isobar).
These are found to be numerically much less important than the two-body
currents from the vg part of the NN interaction, and will not be discussed
further here; for a review, however, see Ref.!.

4.3 Electromagnetic two-body charge operators

Several uncertainties arise when considering the two-body charge operator,
in contrast to the two-body current operator. While the main parts of the
two-body current are linked to the form of the NN interaction through the
continuity equation, the most important two-body charge operators are model
dependent and may be viewed as relativistic corrections. Until a systematic
method for a simultaneous non-relativistic reduction of both the interaction
and the electromagnetic current operator is developed, the definite form of the
two-body charge operators remains uncertain, and one has to rely on pertur-
bation theory.

Two-body charge operators fall into two classes. The first includes those
effective operators that represent non-nucleonic degrees of frecedom, such as
nuclcon-antinucleon pairs or nucleon-resonances, and which arise when those
degrees of freedom are eliminated from the state vector. To the second class
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belong those dynamical exchange clmrge eﬂ'ectu that would appear even in a
description explicitly including n ions in the state vector.
In a description based on meson exchange mechanisms these involve electro-
magnetic transition couplings between different mesons. The proper forms of
the former operators depend on the methed of eliminating the non-nucleonic
degrees of freedom, and therefc Juating their matrix elements with the
usual non-relativistic nuclear wave functions represents only the first approx-
imation to a systematic reduction ®. We shall first consider the two-body
charge operators of this class, to which belongs the long range pion-exchange
charge operator.

The two-body charge operator due to pion exchange is derived by consid-
ering the low energy limit of the relativistic Born diagrams associated with
the virtual pion photoproduction amplitude®?. When these are evaluated with
pseudovector pion-nucleon coupling, the following operator is obtained for di-
agram (a) of Fig. 8:

—[F SQY) +FY (Q’)fx.d gt (ki)
+ '2! " I[F SQ@)+F V(Q’)Tx T T4 'mg :jk.dkj
+ O(Eln - E); (80)

a similar operator corresponds to the time ordering in diagram (b) of Fig. 8.
Here q is the fer to the leus, k; the momentum trans-
ferred by the pion to nucleon j, and Ei, and E are the energies of the initial
and intermediate states, respectively. In Eq. (80) vjj«(k;) is the OPEP in
momentum space

l)u_,(k) = 31}.(’:)1" "TiOg: kd,' -k. (81)

The first term in Eq. (80) contains the intermediate state Green's function
and OPEP. It is therefore contained in the bound state matrix clements of the
single-nucleon charge operator (i.e., in the impulse approximation). The sec-
ond term represents, however, a part, of the exchange charge operator. There
is an additional contribution due to the energy dependence of the pion propa-
gator 27798 To these operators, one must add that associated with the direct
coupling of the photon to the exchanged pion 3°7:98, However, this latter
operator as well as that due to retardation effects in the pion propagator give
rise to non-local isovector contributions which are expected to provide only
small corrections to the leading local term, and have typically been neglected
in studies of charge exchange effects in nuclei. For example, in the few-nucleon
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systems these operators would only contribute to the isovector combination of
the 3He and *H charge form factors, which is anyway a factor of three smaller
than the isoscalar. Thus the two-body charge operator due to pion exchange
is simply taken as

Pianlki, Jeg) = — %[[ﬂs(m)ﬂ Ty + FY Q%) 10] valky)oi - qoy - Ky

+ [F@)ri- 75+ FY (Q)ra4] ve(ki)org B ;- Q] , (82)

where k; + lq =

The effect of the pion exchange charge operator is enhanced by the similar
operator that is associated with p-meson exchange. The p-meson exchange
charge operator can be derived in the same way as the pion exchange charge
operator by considering the non-relativistic reduction of the virtual p-meson
photoproduction amplitudes in two-body diagrams of the form in Fig. 8, and
eliminating the singular term that represents an iteration of the wave function.
The form of the resulting operator is®?

pusolkiky) = '% [ [FE@)ri- i+ FY (@)ng] volksdoi x @) - (o x ;)
+ [FE@)ri- 7y + FY (@] wp(ki)(oy x ) - (00 x ko], (83)

where again non-local terms and/or terms proportional to powers of 1 [(1+K,)
have been neglected. Due to its short range, the contribution associated with
this operator is typically an order of magnitude smaller than that due to pion
exchange.

The 7- and p-meson exchange charge operators contain coupling constants
and bare meson propagators, which are usually modified by ad hoc vertex
form factors in order to take into account the finite extent of the nucleons.
However, this model-dependence can be eliminated by replacing vy and v,
with the vps and vy defined in Eqs. (73)-(74). These replacements are the
ones required for the construction of a two-body current operator that satisfies
the continuity equation. It is reasonable to apply them to the two-body charge
operators as the generalized meson propagators constructed in this way take
into account the nucleon structure in a way consistent with the NV interaction.
An additional reason for using the present construction is that it has been
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shown to lead to predictions for the magnetic form factors of the trinucleons
that are in good agreement with the experimental data 92,95,

All the exchange charge operators shown above belong to the first class
of exchange operators, and appear as non-nmgulu seagull terms in the non-
relativistic reduction of the virtual p ti plitudes for the ex-
changed mesons. The exch chm‘ge that correspond to the pry
and wry couplings belong to the { ‘\ class of genuine dynamical exch
operators, those with transverse four-mtot current.s Their contributions are
found to be numerically very small at momentum transfers below 1 GeV/c. A
discussion of them can be found in Ref.!.

5 Electromagnetic structure of ground- and low-energy states of
A=3-8 nuclei

In this section we give an overview of the current status of elastic and inelastic
electromagnetic form factor calculations in the A=3-6 nuclei. Our discussion
will be in the context of a unified approach to nuclear dynamics based on

realistic two- and three-nucleon interactions and consi two-body charge
and current operators, those discussed in the previous section.

5.1 Elastic and inelastic electron scattering from nucles: a review

In the one-photon-exchange approximation the electron scattering cross section
involving a transition from an initial nuclear state |J;) of spin J; and rest mass
m; to a final nuclear state |J;) of spin Jy, rest mass m; and recmlmg energy
Ej can be expressed in the laboratory frame as7%%®

o= trou Sl [P+ orFr@)] )

where

_ [ acosd/2 -
oM = (2min’o,'2) ' ®5)
2 (86)
=",
T
vr = tan? 2 + 20 (87)

and the recoil factor frec is given by
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_ eg—ecosd 2 . 46 88
free=1+ B _l+m‘ain 7 (88)

The electron kinematical variables are defined in Fig. 9. The last expression for
frec in Eq. (88) is obtained by neglecting terms of order (w/m;)? and higher,
where

w _ Q@ +m)-m]
m 2m}
The nuclear structure information is contained in the longitudinal and trans-
verse form factors denoted, respectively, by Fi(g) and Fr(g). By fixing ¢
and w and varying @ it is possible to separate Fi,(g) from Fr(q) in a proce-
dure known as a Rosenbluth separation. Alternatively, by working at 8=180°
one ensures that only the transverse form factor contributes to the cross sec-
tion and so may be isolated (in this case, we observe that the combination
ou tan?8/2 5 (a/2€;)* as 8 — 180°, and is therefore finite in this limit).
The longitudinal and transverse form factors are expressed in terms of re-

duced matrix elements of Coulomb, electric, and magnetic multipole operators
257399

(89)

R = 5507 LTS @ (00)

Frl0 = g5,57 2 (@R O] . o0

where we have defined

5@ = [ dxisen) Y@t | (©2)

TH@ = ¢ [ ax [V x istea¥ (3] 560 ©3)

TG0 = [ dxis@) YR 5 (94)

e Yia®) = ; (LML, 1plIM)YLu, (%) &, (95)
N.

& = &,, and &4 = F(&, £ié,)/v2. Here p(x) and j(x) are the nuclear charge
and current density operators, and j;(gz) are spherical Bessel functions. The
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reduced matrix elements in Eqs. (90)-(91) are related to the matrix elements
of the Fourier transforms p(q) and j(q), introduced in Sec. 4, via?3:

L J
- Sy gay JiMi, IMITp M)
(IrMylp(@WiMy) = 4 gugli y,,,.,(q)__Lul+1
TATE @I (96)

00 J
Mlea(@ - JQMM) = —VEF S 3 PVITTTID{(06,0)
=l M=-J .
{(JiM;, IM|Jy My)
ﬁl[ +1
[A AT + Uy qu'(q)nm] ,(97)

where A = *1, &,(q) are the spherical components of the virtual photon
transverse polarization vector, and the ‘D{M are standard rotation matrices.
The expressions above correspond to the virtual photon being absorbed at an
angle 8, with respect to the quantization axis of the nuclear spins. The more
familiar expressions for the multipole expansion of the charge and current
matrix elements are recovered by taking q along the spin quantization axis, so
that Y7, (4) = S0 V2J + 1/V47 and D{,,(06,0) — 5 u.

It is useful to consider the parity and time-reversal properties of the mul-
tipole operators ™, Thus the scalar and polar vector character of, respectively,
the charge and current density operators under parity transformations implies
that T§5" and T§}, have parity (~1)7, while T3¢ has parity (~1)'+!. The
resulting selection rules are mixy = (=1)7 (mmy = (—1)?+1) for Coulomb and
electric (magnetic) transitions, where x, and 7 are the parities of the initial
and final states.

The Hermitian character of the operators p(x) and j(x) as well as their
transformation properties under time-reversal, p(x) = p(x) and j(x) =& —j(x),
can be shown to lead to the following relations:

AITF @I = (-1 =2 LITS Iy (98)
TAITT M@ = (=) I GITEMS g1y . (99)

These relations along with the parity selection rules stated above require, in
particular, that elastic transitions, for which Jy=Ji, can only be induced by
even-J Coulomb and odd-J magnetic multipole operators.
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Finally, in the low-g or long-wavelength limit, the multipole operators
defined above can be shown to behave as 73,99

J
i ORS 2J +1 (2‘,1 i Qim (100)
Qu= ‘, m fdxz" Yrm(%) p(x) , (101)
.I
T (g) ~ - \/ 241/ + TG J"+ T M (102)

"'"E\/mﬁﬁ / dx e 3]V [/ Yow(®)] L (109)

and

Tt = 1 T s [ You) v -5

2.l+l J+1lmp-m; ¢’
i 7 q (2J+l)!lq"" !

where in the last equation use has been made of the continuity equation
V -j(x) = —i[H, p(x)), and of the fact that the initial and final states are
eigenstates of the Hamiltonian. In particular, for elastic scattering (Jr=)
the reduced matrix elements of Tc"“‘(q) and T_, » () are proportional to the
ground-state charge and d as

(104)

S

Q= (JnM4=JaIQJoIJn Mi=J) , (105)
ps = 2m (I, My=Jlpso|di, Mi= i) | (106)

where the magnetic moments s  are in terms of nuclear magnetons uy. It is
then easily found that:

TGou 2J+1 VILF '
J,’ ) §) = L
AT ax (G, JOIJiT) (2J+1)" @

, 2741 [J+1 + V2T +1
J, TM URAEY i By
T = =325 T T IO (21+1)" am  (108)

where J satisfies the condition 0 < J < 2J;, and is even in Eq. (107), while it
is odd in Eq. (108). In particular, it is found that

(107)
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TSz @I = 24t 27 (109)

and for J; > 1

TS @I = ﬁ\/ i D4 D 0,0, (110)

where 2 Q ;=3 is the usual ground-state electric quadrupole moment, while for
Ji> 1/2

T = -2 [ N@IA D @, gy

where fi;=1 is the usual ground-state magnetic dipole moment.

5.2 The A=3 and { systems

Because of a destructive interference in the matrix el ts for the magneti
dipole transition between the S- and D-state components of the wave functions,
the impulse approximation (IA) predictions for the H and *He magnetic form
factors (MFF) have distinct minima at around 3.5 fm~ and 2.5 fm~!, respec-
tively, in disagreement with the experimental data 1919 The situation is
closely related to that of the backward cross section for electro-disintegration
of the deuteron, which is in fact dominated by two-body current contributions
for values of momentum transfer above 2.5 fm~1.

The calculated MFF®® of °H and 3He are compared with the experimental
data in Fig. 10. The ground-state wave functions have been calculated ei-
ther with the correlated hyperspherical harmonics (CHH) method using the
AV18/IX model and including one and two A-isobar admixtures with the
transition-correlation-operator technique !'%. The AV18/IX *H and He wave
functions give binding energies and charge radii, which reproduce the experi-
mental values®.

While the measured *H MFF is in excellent agreement with theory over a
wide range of momentum transfers, there is a significant discrepancy between
the measured and calculated values of the 3He MFF in the region of the diffrac-
tion minimum. This discrepancy persists even when different parametrizations
of the nucleon electromagnetic form factors are used for the single nucleon cur-
rent and the model-independent two-body currents.
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In Figs. 11-12 the calculated *H, *He and *He charge form factors (CFF)

88,111 gre compared with the experimental data90-199.112_ Note that the four-

wave function is that obtained in a VMC calculation corresponding to

the older AV14/VIII model, which underestimates the *He binding energy by
3 %53,

The calculated CFF for both A=3 and 4 nuclei are found to be in excellent
agreement with the experimental data: the important role of the two-body
charge operator contributions above ~ 3 fm~! is evident, consistently with
what was found in earlier studies.

5.8 The A=6 systems

In this section we discuss the ®Li ground-state longitudinal and transverse form
factors as well as transition form factors to the excited states with spin, parity
and isospin assignments (J™;T') given by (3+;0) and (0%;1). The calculations
are based on VMC wave functions obtained from the AV18/IX Hamiltonian
model 547, The calculated binding energies for the ground-state, and (3+;0)
and (0%;1) low-lying excited states are given in Fig. 6. The ground-state is
underbound by nearly 4 MeV compared to experiment, and is only 0.4 MeV
more bound than the corresponding ‘He calculation (27.8 MeV). This is above
the threshold for breakup of ®Li into a a-particle and deuteron. In principle,
it should be possible to lower the variational energy at least to that threshold,
but the wave function would be too spread out. In the variational calculations
reported by Wiringa and Schiavilla!!? the parameter search was constrained to
keep the rms radius close to the experimental value of 2.43 fm~!. The (exact)
GFMC results for this Hamiltonian, also given in Fig. 6, indicate the ground-
state binding energy and radius are in agreement with the experimental value,

while the (3*;0) and (0*;1) experimental binding energies are undcrestimated

by about 3%.

It should be emphasized that previous calculations of the elastic and in-
elastic six-body form factors have relied on relatively simple shell-model 114116
or a-d 17 cluster wave functions. These calculations have typically failed to
provide a satisfactory, quantitative description of all measured form factors.
More phenomenologically successful models have been based on aNN 11813
clusterization, or on extensions of the basic a-d model with spherical clusters,
in which the deuteron is allowed to deform, or stretch, along a line connect-
ing the clusters’ centers of mass 122, However, while these models do provide
useful insights into the structure of the A=6 nuclei, their connection with the
underlying two- (and three-) nucleon dynamics is rather

The calculated clastic form factors Fi(Q) and Fr(Q) !'3 are compared
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with the experimental values ?*12¢ in Figs. 13 and 14. Since the °Li ground-
state is (1+;0), both J=0 and J=2 Coulomb multipoles contribute to Fy, while
only the J=1 magnetic multipole operator contributes to Fr. In these figures
the results obtained in both IA (empty squares) and with inclusion of two-body
corrections in the charge and current operators (filled squares) are displayed,
along with the statistical errors associated with the Monte Carlo integrations.
The Fy, form factor is in excellent agreement with experiment. In particular,
the two-body contributions (predominantly due to the n-like charge operator)
shift the minimum to lower values of momentum transfer Q, consistently with
what has been found for the charge form factors of the hydrogen and helium
isotopes. The T multipole contribution is much smaller than the T oM
one, and at low Q is proportional to the ground-state quadrupole moment.
The theoretical prediction for the latter is significantly larger (though with a
50% statistical error) in absolute value than the measured value, but it does
have the correct (negative) sign. It is interesting to point out that cluster
models of the ®Li ground-state give large, positive values for the quadrupole
moment, presumably due to the lack of D-waves in the a-particle, and the
consequent absence of destructive interference between these and the D-wave
in the a-d rclative motion.

The experimental transverse form factor is not well reproduced by the-
ory for Q-values larger than 1 fm~!. Since the ®Li ground-state has T=0, only
isoscalar two-body currents contribute to Fr(Q). The associated contributions
are small at low Q, but i with @, b ing significant for @ > 3 fm~1.
However, the data cover the Q-range 0-2.8 fm~!. The obscrved discrepancy
between theory and experiment might be due to deficiencies in the VMC wave
function. Indeed, it will be interesting to see whether this discrepancy is re-
solved by using the more accurate GFMC wave functions. We also note that
the calculated magnetic is about 4 % larger than the experimental
value, which is close to that of a free deuteron.

The measured longitudinal inelastic form factor to the (3+;0) state!2-127 jg
found to be in excellent agreement with the VMC predictions!!3, as can be seen
in Fig. 15 . We note that this transition is induced by J=2 and J=4 Coulomb
multipole operators, and thus the associated form factor F}(Q) behaves as
Q* atlow Q. Also good agr b the experi al 127,128 gand VMC
calculated!!3 values is found for the transverse inelastic form factor to the state
(0%;1), Fig. 16 . The latter is an isovector magnetic dipole transition and, as
expected, is significantly influenced, even at low values of Q, by two-body
contributions, predominantly by those due to the x-like current operator.

37



5.4 Some concluding remarks

In this section the elect gnetic structure of the A=3-6 nuclei has been dis-
cussed within a realistic approach to nuclear dynamics, based on nucleons in-
teracting via two- and three-body potentials and consistent two-body currents.
The only phenomenological input, beyond that provided by the underlying in-
teractions, consists of the electromagnetic form factors of the nucleon, which
are taken from experiment. Within this framework, a variety of electronuclear
observables, including ground-state moments (see Ref.!) as well as elastic and
inelastic form factors, are bly well described by theory at a quantitative
level. The only remaining discrepancy is that bet the experimental and
calculated positions of the first zero in the 3He magnetic form factor and the
experimental and calculated transverse form factor of °Li for Q-values larger
than 1 fm—!.
The special role phyed by the two-body charge and current operators as-
d with r-exch d be ized. Their contributions dominate
both isoscalar and isovector charge form factors of the A=2-4 nuclei, as well as
their isovector magnetic structure at intermediate values of momentum trans-
fers Q ~3.5-4.5 fm™!. In fact, a description in which the degrees of freedom

associated with virtual pion production were to be ignored, would dramatically

fail to reproduce the experimental data. That only the m-exchange currents
required by gauge invariance (and chiral symmetry) should have (so far) clear
experimental evidence is perhaps not surprising. This fact has been referred
to in the past as the “chiral filter” paradigm !2°.

Finally, the remarkable success of the present picture based on (essentially)
non-relativistic dynamics, even at large values of momentum transfer, should
be stressed. It suggests, in particular, that the present model for the two-body
charge operators is better than one a prioni should expect. These operators,
such as the r-exchange charge operator, fall into the class of relativistic cor-
rections. Thus evaluating their matrix elements with the usual non-relativistic
wave functions represents only the first approximation to a sy ic reduc-
tion. A consistent treatment of these relativistic effects would require, for
example, inclusion of the boost corrections on the nuclear wave functions *7.
Yet, the 1l b the calculated and ed charge form
factors of the A—H nuclei suggests that these corrections may be negligible
in the Q-range explored so far.
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Tables

Table 1: i { d propertics d to recent NN interaction models;
meson nchmga effects in pg and Q  are not included.

Experiment | Argonne vis | Nim-11 | Reld93 | CD-Bonn | Units

As 0.8846(3) 10 0.8850 | 0.8845 | 0.8853 0.8845 | fm1/?
n 0.0256(4) 13 0.0250 | 0.0252 | 0.0251 0.0255

rd 1.971(5) 192 1.967 | 1.9675 | 1.9686 1.966 | fm
pe | 0.857406(1) 192 0.847 po
Q4 0.2859(3) 13 0.270 0271 | 0270 0.270 | fm?
Py 5.76 5.64 5.70 483

Figures

Figure 1: densities of the S=1 di in its two spin projections, S;=%1 and
S5 =0, respectively.
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shift analyses.

° 00 200 ) w00
By, (MeV)
Figure 3: 35;-3D) mixing p €3 from the Argi s i ion and various phase
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Figure 5: 3P, phases from different modern NN interaction models.
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Figure 6: Energy spectra of A=4-7 nuclei, obtained in VMC and GFMC calculations with the
Argonne vyg two-nudnon md Urbana IX three-nucleon interactions. Both the central value
and the error esti are shown. GFMC results are a variational
bound obtained by averaging from 7=0.04-0.06 MeV—?,
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Figure 7: di of the isovector two-body currents sssociated
with pion cxdunge. Solid, duhed and wavy lines denote plons, and ph
respectively.
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Figure 8: Feynma.ni diagram representation of the Born litudes for photoproducti

of virtual mesons. Solid, dashed and wavy lines denote nucleons, mesons, and photons,
respectively.

Figure 9: Electron scattering in the phot h imation. Solid, thick-solid
and wavy lines denote and ph ivel,
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Figure 10: The magnetic form factors of *H and *He obtained in i Ise approximation {IA),

and with inclusion of two-body ql‘OT(D)l currem contributions, are compared with data
(shaded area) from A etal. ical results correspond to the AV18/UIX CHH
wave functions, and employ the dipole parametrization for the nucleon electromagnetic form
factors. Note that the Sachs form factor Gx.(q’) is used in the model-independent isovector
two-body btained from the charge-i dent part of the AV18 interaction. Also
shown are the total results corresponding to the Gari-Kriimpelmann parametrization 7 of
the nucleon electromagnetic form factor [TOT(GK)).
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with data (shaded area) from Amroun et al. '®. Note that the [A results also lnclude the
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Q(im™)

Figure 11: The charge form factors of 3H and He, obtained in | i!

bt TOT),
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Figure 12: The charge form factors of 4He, obtained in impulse approximation (IA) and with

inclusion of two-body charge it and corrections (TOT), are compared
with dats from Refs. 192:112, Theoretical results correspond to the Argonne vg4 two-nucleon
and Urbana VIiI thne-nudwn interactions, use 8 VMC “He wave hmction, and employ the
dipole parametrization for the nucleon electromagnetic form factors !t
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Figure 13: The longitudinal form factors of ®Li, obtained in impulse approximation (IA) and
with inclusion of two-body charge op ibutions and relativistic corrections (TOT),

are compared with data from Ref. 123 The theoretical results correspond to the Argonne
v1s and Urbana IX three-nucleon Inunctlom, use & VMC °Li wave function, and employ
the dipole parametrisation of the nucleon electromagnetic form factors *!
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Figure 14: The transverse form factors of SLi, d in impul opr imation (fA)
and with inclusion of two-body current ions (TOT), are pared with data from
Refs, 172:124,138 The theoretical results correspond to the Argonne v1s and Urbana IX three-
nucleon lnceru:hann. use & VMC °L! wave function, and employ the dipole parametrization
of the nucleon electromagnetic form factors 12,
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Figure 15: The longitudinal form factors for the transition from the 1+ T=0to the 3+,T=0
(2.18 MeV) levels of °Li, obtained in impulse appm:dmuﬂon (lA) and with inclusion of
two-body charge operator ib and {TOT), are compared
with data from !'7. The th ical results pond to the w13 and Urbana IX

three-nucleon Inmmhml, use VMC 1+,T=0 and 3+,T=0 ‘Li wave func\lona, and employ
the dipole parametrization of the nucleon electromagnetic form factors 1
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Figure 16: The transverse form factors for the trmhlon from the 1+ ,T=0 to the 0+,T=1

(3.56 MeV) levels of SLi, obtained in

(IA) and with inclusion of

two-body current contributions (TOT), are eomplnd with data from '37. The theoretical
results correapond to the Argonne v)s and Urbana IX three-nucleon interactions, use VMC
1+,T=0 and 0+,T=1 °Li wave functions, and employ the dipole parametrization of the
nucleon electromagnetic form factors 113,
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